

AN AUTONOMOUS UNDERWATER EXPLORER FOR FLOODED MINES

DATA POST-PROCESSING

STEPHEN HENLEY & HILCO VAN MOERKERK RCI-4DCODERS (UK & AUSTRIA)

NEMO 33, UNEXMIN FINAL CONFERENCE 26TH SEPTEMBER 2019

This project has received funding from the European Union's Horizon 2020research and innovation programme under grant agreement No 690008.

POST-PROCESSING SUMMARY

- Data standards agreed
- Data conversion requirements for navigation and sensor systems agreed
- Database management: SQLite
- Post-processing applications
- Point-cloud modelling
- Visualisation applications

DATA TRANSFER AND STORAGE

- Data from UX-1 in ROS bag format converted to CSV, JPG, and AVI formats
- Large data volumes held in robust (military-spec) disk drives kept in separate locations (as required by DMP)

SQLITE DATABASE MANAGEMENT SYSTEM

- Relational database management full SQL support
- No server; no database administrator
- Open-source, free of charge
- Very large (5 million+) installed base; active user community
- API for multiple programming languages (including C++ and Fortran)
- Simple data typing: REAL, INTEGER, TEXT, BLOB, NULL

SOFTWARE DEVELOPMENT

Data analysis methods

MULTI-SPECTRAL DATA - CALIBRATION

Polished surface mineral samples at 25 cm distance with 90°, 80°, 70°, 60° and 50° tilt

- Using sets of reference minerals, polished and rough
- Illumination tested at different distances and angles
- Illumination dependence on lighting/camera geometry

Calibration measurements at Porto with the checkerboard, white board and mineral samples

Further tests in 'real' conditions at Kaatiala and Idrija, using mineral samples from Ecton

MULTI-SPECTRAL DATA - PROCESSING OPTIONS

Any spectrum can represent a mixture of spectra of different pure minerals

- I. Linear programming end-member identification
- 2. Principal components and factor analysis
- 3. Multiple discriminant analysis
- 4. Matching coefficients
- 5. Neural networks for classification. Calcite detection application

SUB-BOTTOM SONAR DATA (30CM TO 2.5M DEPTH) WIGGLY LINE OR COLOUR-CODED PLOTS

M3 MULTI-BEAM SONAR DATA

M3 multi-beam sonar data: the entrance to the tunnels at Kaatiala.

(point-cloud; colour coding by depth or other data fields)

STRUCTURAL GEOLOGY

 Triangulated model from point cloud, colourcoded to show significant fracture orientations in roof of tunnel at **Ecton Mine**

Denness B-type contoured stereographic projection plot of the roof orientations

PHOTOGRAMMETRY POINT-CLOUD CREATION TO CONSTRUCT 3D MODELS

Ecton Mine:

- dressing-floor wall
- building to be demolished
- Deep Ecton adit

PILOTS

Handling large data volumes

Kaatiala 477 Gb

Idrija 671 Gb

Urgeirica 1661 Gb

Ecton 5200 Gb

Molnar Janos 938 Gb

DATA EXTRACTION

Point Cloud data

- Needed to be converted to world coordinates -> transformations
- Highly-optimized Python scripts for rapid extraction
 - SDD drives are your friend!
 - From hours to minutes

Images

- Image data in ROS bagfile format
- (1) Simple extraction into image files.
 Correction of lens distortion ('fisheye' effect). Compilation of videos
- (2) Rapid extraction from a merged bag file, and correction, direct to videos, with time, location, orientation data in captions

FIRST METHOD – PUBLIC DOMAIN IMAGE PROCESSING SOFTWARE (PHOTODEMON, VIRTUALDUB)

Fish-eye distortion correction, one image at a time

SECOND METHOD – FAST PYTHON SCRIPTS FOR RAPID EXTRACTION OF UN-DISTORTED IMAGES & VIDEOS

Time caption

right_uv_corrected: 1559130226861752945 = 2019-05-29 11:43:46

Location caption

Depth: 37.3 X, Y: -2.4, 2.7 Roll: -2.2, Pitch: 0.4, Yaw: 331.2

SIMPLE EXAMPLE

Video with captions

These are attached to each separate frame, so the exact location of each photo image is recorded

POINT CLOUD DATA PROCESSING GEOREKA SOFTWARE OVERVIEW

- Visualization & Interpretation
- Data-Driven modelling (processing)
- Interactive modelling (e.g. selections)

DATA AND MODEL VISUALISATION: TOOLS DEVELOPED

- Visualisation of very large pointcloud data sets
 - Octree encoding based visualization
 - Smart handling of points
 - Caching of octree blocks (remove points from memory if not used)
- Virtual reality viewing
 - Demonstrated at Bled workshop
 - Interaction with point clouds in VR. Coding in progress.

Demonstrated at PDAC 2019, Toronto and EIG 2018, Durham

- Fast 3D point selections
 - Structural planes extraction
- Fly-through animations
- Align images to point clouds
 - Coding done, but limited testing due to lack of test data
- Output for hardcopy: 3D printer, projector, glass block, and hologram

SHORT FLY-THROUGH EXAMPLE

- FARO Data scan:
 - 550+ million points
- 6-Core 32GB highend laptop

POINT CLOUD DATA PROCESSING

- Efficient data import
- Convert to Octree sub-divisions
- "Throw away" as much data as possible
 - But, keep the important bits
 - Ultra-fast sub-sampling
 - Filters
 - Unique methodology using a low-resolution preprocessing and robust triangulation of noisy data

DEALING WITH MISALIGNMENTS I

- Data from 4 missions
 - Nearly same starting points and orientations
 - Points further away show greater misalignment

DEALING WITH MISALIGNMENTS 2

- Reducing the error
 - Sub-sample
 - Align point sets
 - Merge
 - Sub-sample again
 - Reduce number of duplicate points

FLY-AROUND

- Result for the Molnar Janos cave data
- Merged data from 4 dives

DETECTION AND CORRECTION OF NOISY DATA

Misalignment of point clouds is inevitable with differences in navigation start points.

We have developed a software algorithm to robustly triangulate noisy, even misaligned data.

Example triangulation from 4 surveys at Molnar Janos cave with corrected misalignment.

DETECTION AND CORRECTION OF NOISY DATA

Another example with triangulated surface from a GeoSLAM survey at Ecton above water level without corrected misalignment (200+ million points).

OTHER RELATED TECHNIQUES

Using an initial triangulated surface we can determine objects within the tunnel walls using the distance from that surface.

(Example from unrelated data set)

