

UNEXMIN DELIVERABLE D3.1

UX-1 ROBOT SOFTWARE ARCHITECTURE
REPORT

Summary:
This document reports the software design process and UX-1 software
architecture.

This project has received funding from the European Union’s Horizon 2020research and innovation
programme under grant agreement No 690008.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - Mai 2017 Page: 2

Authors

Claudio Rossi, UPM

Sergio Dominguez, UPM

Pascual Campoy, UPM

André Dias, INESC TEC

Alfredo Martins, INESC TEC

Carlos Almeida, INESC TEC

José Almeida, INESC TEC

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - Mai 2017 Page: 3

Approval status

Function Name Date Signature

Deliverable

responsible
Claudio Rossi 30.05.2017

WP leader Claudio Rossi 30.05.2017

Reviewer Alfredo Martins 30.05.2017

Reviewer Stephen Henley 30.05.2017

Project leader Norbert Zajzon 31.05.2017

Lead beneficiary: Universidad Politécnica de Madrid (UPM)

Other beneficiaries: INESC TEC, TUT

Due date: M16

Nature: Report

Diffusion Public

Revision

history

Author Delivery date Summary of changes

Version 1.0 C. Rossi 31.03.2017 --

Version 2.0

Version 3.0

Version 4.0

Version 4.1

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - Mai 2017 Page: 4

Disclaimer: This report reflects only the author’s view. The European Commission is not
responsible for any use that may be made of the information it contains.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 5

Table of contents

AUTHORS ... 2

TABLE OF CONTENTS ... 5

LIST OF FIGURES .. 6

LIST OF TABLES .. 6

1 INTRODUCTION ... 7

1.1 MIDDLEWARE .. 7

1.2 INTERFACES .. 7

1.3 STANDARDIZATION .. 8

2 UML FOR ROS IN UNEXMIN ...10

2.1 NODES .. 10

2.2 TOPICS (EXTENDED VERSION) .. 10

2.3 SERVICES .. 10

2.4 SUBSCRIPTION/PUBLICATION (COMPACT FORM) ... 11

2.5 SUBSCRIPTION/PUBLICATION (EXTENDED VERSION) ... 11

2.6 PARAMETERS SERVER .. 12

3 MAIN SOFTWARE ORGANIZATION ...13

4 DETAILED DIAGRAMS ..14

4.1 COMPONENTS RELATIONSHIPS ... 14

4.2 SENSOR FUSION ... 15

4.3 LOCALISATION AND MAPPING .. 16

4.4 GNC .. 17

4.5 LOW-LEVEL CONTROL .. 18

5 COMPONENT INTERFACES ..19

5.1 SLAM INTERFACE .. 20

5.2 POSE INTERFACE ... 20

5.3 LL COMMANDS INTERFACE ... 21

5.4 LL FEEDBACK INTERFACE .. 21

5.5 PERCEPTION INTERFACE .. 22

5.6 MANEUVERS INTERFACE .. 22

6 PARAMETERS SERVER (GLOBAL SYSTEM VARIABLES) ..23

7 OTHER SYSTEM’S ELEMENTS ...24

8 HARDWARE ...25

8.1 COMPUTATIONAL HARDWARE ... 25

8.2 UX-1 HARDWARE ARCHITECTURE .. 26

9 REFERENCE SYSTEM ..27

10 SOFTWARE VERSIONS ..28

11 REFERENCES ...29

12 APPENDIX: UML QUICK REFERENCE ..30

12.1 CLASS DIAGRAMS ... 30

12.2 COMPONENTS DIAGRAMS ... 31

12.3 DEPLOYMENT DIAGRAMS AND NODES .. 32

12.4 MODELLING SYSTEM’S BEHAVIOUR .. 32

12.5 COMMON MECHANISMS ... 33

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 6

List of Figures

Figure 1. General middleware concept ... 7

Figure 2. Basic ROS architecture ... 8

Figure 3. Components view of the software system ... 13

Figure 4. Components and their relationships .. 14

Figure 5. Sensor Fusion ... 15

Figure 6. Localisation and mapping module .. 16

Figure 7. GNC component: main modules ... 17

Figure 8. Components’ interfaces ... 19

Figure 9 - UX-1 Hardware Architecture ... 26

Figure 10. Reference system and thrusters numbering ...27

List of Tables

<No tables>

/Users/claudio/PROJECTS/UNEXMIN/UNEXMIN%20working%20stuff/D3.1%20-%20UX-1%20Robot%20Software%20Architecture%20Report-V1.3.docx#_Toc483992620

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 7

1 Introduction

This document reports the general UX-1 software architecture as well as details of its current
implementation status. The Middleware, interfaces and standardization process are also
described.

1.1 Middleware

The role of the middleware is to provide an abstraction layer between the hardware and the
software, as well as providing communication means between software modules and between
software and hardware components.

Figure 1. General middleware concept

After a brief analysis of the alternatives, it was decided to adopt the originally proposed
middleware, ROS (Robot Operating System). The basic reason of this choice is that ROS is
imposing itself as a de facto standard in robotics. Additionally, the research groups involved in
the software development have a long standing experience in its use, so its adoption allows a
quick start of the SW development task, as well a common understanding. In brief, the
advantages of ROS are:

• It is a modular system.

• Excellent hardware support (drivers).

• Many algorithms already implemented and available as open source software,
which helps early prototyping of own modules.

• Easy to use tools for development

• Big community of users/developers

• It provides abstraction of communications.

• Supports point-to-point and broadcast communications.

• It is Open Source.

In brief, “ROS (Robot Operating System) provides libraries and tools to help software
developers create robot applications. It provides hardware abstraction, device drivers,
libraries, visualizers, message-passing, package management, and more. ROS is licensed
under an open source, BSD license” [1].

1.2 Interfaces

Interfaces between software and hardware modules are provided by the ROS messaging
system. The main communication means foreseen is the publisher/subscriber model, a
broadcasting model that is agnostic to where the data is coming from and how. Consumers

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 8

(subscribers) know there will be a specific type of data (published by some other module) they
are listening to. This allows decoupling software modules, at the benefit of distributed software
development, software modularity and maintenance.

Interfaces between modules are described in detail later in this document.

1.3 Standardization

Provided at least three independent partners will be developing software (INESC: sensors
registration, data fusion, SLAM; UPM: Guidance, Navigation and Control, TUT: low-level
hardware controllers) and in each institution several researchers will be developing software
modules, it was crucial to agree on a common language. Surprisingly, there is no standard
(visual) modelling language for ROS. Therefore, we opted for adopting the widely know UML
software modelling language. This required to “translate” the ROS jargon to the UML
conceptual framework. UML provides modelling tools both for the static and dynamic views of
the software (that is, its structure and its behaviour), and a wide range of additional elements
to precisely define module interfaces, communications and interactions.

ROS in a nutshell

We review here the ROS basics
extremely briefly. For further detail
we refer to [1].

In ROS, software modules are called
NODES. “A node is a process that
performs computation. Nodes are
combined together into a graph and
communicate with one another
using streaming topics and RPC
services” [1]. A robot control system
is composed of many nodes.
Typically, there will be a node the controls each sensor (and publish its data), nodes that
control robot's actuators (subscribing to, i.e., receiving, some reference command), nodes that
performs localization, mapping, planning etc. An important feature of ROS is its distributed
architecture, that, is ROS nodes can –and typically do- run on different physical
computational resources (computers, embedded PCs, etc.). The ROS system make this feature
totally transparent to the nodes.

The first inter-node communication means is via TOPICS. Topics are intended for
unidirectional, one-to-many communication. “Topics are named buses over which nodes
exchange messages. Topics have anonymous publish/subscribe semantics, which decouples
the production of information from its consumption. In general, nodes are not aware of who
they are communicating with. Instead, nodes that are interested in data subscribe to the
relevant topic; nodes that generate data publish to the relevant topic2. There can be multiple
publishers and subscribers to a topic” [1].

If nodes need to perform Remote Procedure Calls (RPC), i.e. receive a response to a request,
ROS provide the concept of SERVICES. RPC request/reply interaction is done via a Service,
which “is defined by a pair of messages: one for the request and one for the reply. A
providing ROS node offers a service under a string name, and a client calls the service by
sending the request message and awaiting the reply. Client libraries usually present this
interaction to the programmer as if it were a remote procedure call” [1].

Finally, global configuration parameters can be shared via a PARAMETER SERVER. “A
parameter server is a shared, multi-variate dictionary that is accessible via network APIs.

Node

Topic

Publication Subscription

Node

Topic

Node

Node

Service
invocationMaster

Service
invocation

Computer BComputer A

Node

Topic

Publication Subscription

Node

Topic

Node

Node

Service

invocation
Master

Service

invocation

Figure 2. Basic ROS architecture

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 9

Nodes use this server to store and retrieve parameters at runtime. (…) It is best used for
static, non-binary data such as configuration parameters. It is meant to be globally viewable
so that tools can easily inspect the configuration state of the system and modify if necessary”
[1].

The whole system is governed by a MASTER node. This “provides naming and registration
services to the rest of the nodes in the ROS system. It tracks publishers and subscribers to
topics as well as services. The role of the Master is to enable individual ROS nodes to locate
one another. Once these nodes have located each other they communicate with each other
peer-to-peer. The Master also provides the Parameter Server” [1].

In the following sections, we assume the reader has basic knowledge of the UML modelling
language. The Appendix provides a basic guide to the main UML concept used. For a more
complete UML reference we refer the reader to [2].

http://wiki.ros.org/Nodes
http://wiki.ros.org/Services

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 10

2 UML for ROS in UNEXMIN

This section formulates a proposal for the use of the UML style to model ROS systems. Such
proposal constitutes the formal common “language” that the partners will use to talk to each
other. It is intended for a smooth common understanding at a high level, as well as for a
smooth integration of software module developed by different development teams. Its use is
also proposed (but not enforced) for internal/informal communications. UML diagrams
should have sufficient information associated to nodes, interfaces and communications to
allow these to be translated in a coherent, complete and unambiguous way into software
modules (mainly in C/C++ programming languages).

2.1 Nodes

ROS nodes are modelled as UML Classes. Since nodes are processes, they are modelled
specifically as “active classes”. Each Node has a unique name, a set of attributes (internal
variables) and a set of methods, that implement internal functions and public services.
Published Topics are specified in a compact form as public attributes, grouped under the
stereotype <<topics>>. Services are specified as public methods, grouped under the stereotype
<<services>>.

2.2 Topics (extended version)

In case of need of more details, topics can be expressed as “stereotyped” classes (<<Topic>>)
associated to the publish/subscribe association between nodes. Topic attributes model the
data published. Additional information can be added as “properties” (labels between braces,
e.g.,: -Image{640x480}, +size:int {positive only}).

2.3 Services

Service requests are modelled as methods invocations, via a stereotyped association
(<<Service>>). Note that the direction of the association goes from the caller to the provider,
since it is a method call. The result of the request is given as return value of the service method.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 11

In other words, the requesting node sends a request to the service provider, and this sends
back a result as a return value. A service request can have one or more parameters. Return
type and parameters are specified in the method declaration in the corresponding class
section.

2.4 Subscription/publication (compact form)

Topics publication is simply implied in the definition of the Node (as public attribute, under
the stereotype <<Topics>>.

Subscription is expressed in a compact form as a stereotyped dependency (<<Subscribes>>)
of the subscripting node on the publisher Node, as in the figure below:

Note the direction of the arrow: from the subscripting node to the publishing node (the former
depends on the latter).

2.5 Subscription/publication (extended version)

Subscription and publication of Topics by Nodes is modelled in details as a “realization”
relationship between the publishing Node and the Topic, and as a dependency of the
subscribing Note from the Topic. Such relationships will be stereotyped respectively as
<<Publish>> and <<Subscribes>>. Note, again, the direction of the arrow: form the
subscripting node to the Topic (the former depends on the latter). This system is similar to the
one used for the specification of interfaces.

Relationships stereotypes can be omitted in case the relationships kind is evident from the
context. Also, as common in UML, class details (e.g., topics attributes) can be omitted for
simplicity.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 12

2.6 Parameters Server

This is modelled as a class, with obvious stereotype <<Parameter Server>>. Its parameters are
modelled as attributes of the class. Note the “{Global}” label, indicating that it is a global
variable of the system (all nodes have access to it).

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 13

3 Main software organization

The diagram below describes the main organization of the software, in terms of software
components (collection of SW modules). Components are color-coded according to the
responsibility for their development: UPM (CAR), TUT, INESC TEC, RCI.

Figure 3. Components view of the software system

In brief, sensors data is processed by the “Sensor Fusion” and SLAM software, which provide
data for the navigation and control software. This is in charge of generating control
commands, which are sent to the low-level control software to the actuators. The dashed
arrows represent a data logging component which receives data from all the other
components, converts it to a standard format and transfers it to a database management
system for offline post-processing after completion of each mission. This will be explained in
detail in D6.1-3.

A more detailed and more formal architecture of the robot control system is shown in the
following sections. Note that this document is focussed on the robot autonomous navigation
systems. For details about scientific instrumentation and data management see D2.2 and
D6.1-3.

Sensor Fusion Low-level control

Guidance,

Navigat ion and

Control (GNC)

Localisation and

Mapping (SLAM)

UX-1

DBMS

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 14

4 Detailed diagrams

4.1 Components relationships

The following diagram depicts more in detail the interconnection between the for main
software components, in terms of their interfaces. In the next subsections, detailed diagrams
for each of the modules are presented. Their interfaces are described in Section 5.

Figure 4. Components and their relationships

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 15

4.2 Sensor Fusion

This module will be responsible for providing pose and perception, through components to the
localization and mapping module. Internally the sensor fusion is composed by three modules:

- Pose Estimation

- Sensor Perception

- Data Acquisition and Registration: responsible for sensor acquisition of the
following sensors

o Multibeam M3
o SLS
o Scanning Sonar
o DVL
o INS
o Instrumental Sensors (PH, Water Sampling, Magnetic Field, EC and

Subbottom Profile)
o Multispectral Camera

Figure 5. Sensor Fusion

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 16

4.3 Localisation and mapping

This module is responsible for receiving the Pose and Perception information (pointCloud,
features and localization data) provided by the Sensor Fusion module. Internally the
localization and mapping is composed by two modules that share the information through
Map Data interface:

- SLAM: responsible for providing corrected map data and global localization;
- Mapping: responsible for managing the maps structures (local, topologic and

semantic);

 Figure 6. Localisation and mapping module

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 17

4.4 GNC

The GNC module has three main components: Planner, Guidance and Navigation. The first is
the highest level module in charge of deciding the overall movement strategy, and send actions
(e.g., turn, stop, go forward, …) to the Guidance module. This computes trajectories in form of
waypoints. Waypoints are fed to the Navigation module which generates velocity profiles that
are finally transformed into control commands. The Control module publishes the control
commands which constitute the “LL commands” interface. Note the dependencies of the
Guidance module from the localisation and mapping information (SLAM and Pose interfaces).
These three modules depend on the topological map which is created/updated during the
mission. Also, the Planner may take into account a previously generated map and/or other
pre-defined mission requirements.

Finally, the Data logging and conversion module is responsible of writing all the relevant data
to the log database.

Figure 7. GNC component: main modules

GNC

Data logging and

Conversion

Low-level control

Planner Guidance Navigat ion

Waypoint

Trajectory

Attributes…

Control

Action

<<Topic>>

Thrusters

RPMs

<<Topic>>

 Force

vector

<<Topic>>

Pendulum

angle and

speed

<<Interface>>

LL commands

Pendulum_Pitch: float

Bladder: float

ForceVect: float[3]

Tx_RPM: int, float

<
<

P
u
b

lis
h
>

> <
<

P
u
b

lish
>

>

<
<

P
u
b
lish

>
>

<
<
Re

al
iz
es

>
>

<<Topic>>

Bladder

<
<
Pu

bl
is
h>

>

PoseSLAMManeuver

Attribute

Attribute

Topological map

Attribute

…

Map

Attribute

…

Mission

DBMS

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 18

4.5 Low-level control

From a Software Engineering viewpoint, the low-level software organization is relatively
simple, since it will consist in two monolithic programs running, one in each microcontroller
(see also Sec. 8, Computational Hardware). The following diagram illustrate the low-level
software.

According to the commands received (see LL commands interface), the microcontrollers
will distribute the power requirements to 8 CAN data frames which includes the NOD ID
number of each thruster- Additionally, they will send commands to the pendulum’s stepper
motor and to the ballast motor.

All feedback from the thrusters (EPRM, duty cycle, force and current) will be sent through the
microcontroller to the main CPU (see LL feedback interface). The microcontroller also
monitors the power used by each motor in order to detect any malfunction.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 19

5 Component interfaces

Components’ interfacing is implemented via the topic publishing/subscription mechanism of
ROS or via RPC (service invocation). In the following, the details of such interfaces is reported.

It is important to highlight that ROS provides a set of “standard” topics (e.g.,
geometry messages, sensor messages, diagnostic messages,…). We will adopt
such standard topics format whenever possible.

It is also important to highlight that all interface data will be time-stamped and
fed to the “Data logging” subsystem.

Figure 8. Components’ interfaces

Interfaces

1. SLAM – localization and mapping information for GNC
2. Pose – pose information (position and orientation) as computed by sensor fusion

algorithms
3. Low-level commands – control commands for low-level controllers
4. Low-level feedback – feedback from de actuators
5. Perception – fused localization information, point cloud data and extracted features

information
6. Maneuvers – maneuvers requests for perception purposes

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 20

5.1 SLAM interface

5.2 Pose interface

Name Input
parameters

Units/
comments

Output
parameters

Units/
comments

Kind

Octree_map None -- theOctree Featured
map (ROS
Octomap
format)

Topic

PointCloud -- Raw data to
be processed
by GNC in
case of need

-- -- Topic

absLoc None theLoc:
float[3]

Estimated
X,Y,Z w.r.t
deployment
point

Topic
(geometry_msgs/
PointStamped)

Name Input
parameter

s

Units/
comment

s

Output
parameter

s

Units/ comments Kind

Pose

None Meters,
degrees

thePose:
float[7]

7-dimensional
array of floating
point numbers
(x,y,z+quaternio
n for orientation
(see Section
“Reference
System“ below)

Topic
(geometry_msgs/
PoseStamped)

dotPose None Meters,
degree /sec

dotPose:
float[6]

6-D velocity Topic
(geometry_msgs/
TwistStamped)

dotdotPose Note Meters,
degrees
/sec2

dotdotPose:
float[6]

6-D acceleration Topic
(geometry_msgs/
TwistStamped)

Instrument
s status

-- -- -- Nav. instruments
status

Topic
(diagnostic_msgs
/ Diagnostic
Status.msg)

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 21

5.3 LL commands interface

5.4 LL feedback interface

Name Input
parameters

Units/
comments

Output
parameters

Units/
comments

Kind

Pendulum_Pitch -- -- Angle: float

Degrees

Topic

Bladder -- -- B: float Force
(newtons,
positive or
negative
buoyancy)

Topic

Force vector

--

-- float[3]

 Topic

Tx_RPM -- -- T=1..8

RotSpeed:
int32

Thruster
No. (see
Section
“Reference
System“
below)

RPMs

(<0 means
backwards)

Topic

Name Input
parameters

Units/
comments

Output
parameters

Units/
comments

Kind

Pendulum -- -- pitch_angle:
float

Degrees Actual
pendulum
pitch angle

Topic

Bladder_stat Actual %of
filling

Topic

Tx_RPM --

-- T=1..8

ERPM: float

Thruster No.
(see Section
“Refence
System“
below)

RPMs (actual
RPMs)

Topic

Thruster
status

 int Error code to
be defined

Topic

Battery
status

-- -- Battery level
and status

Topic

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 22

5.5 Perception interface

5.6 Maneuvers interface

Name Input
parame

ters

Units/
comme

nts

Output
parameters

Units/
comments

Kind

fPose

None Correcte
d Pose
after
sensor
fusion

7-dimentional
array of floating
point numbers.

X,Y,Z position +
quaternion for
orientation

Topic

Features none Features
extracted
from
RAW
sensor
(Multibe
am, SLS
and
Scanning
Sonar)

type: int
feature_parame
ters: array(float)

type,
features_param
eters

Topic

SPointClo
ud

-- RAW
PointClo
ud SLS

-- -- Topic
(sensor_msg/Poi
ntCloud)

MPointCl
oud

none RAW
PointClo
ud
Multibea
m

 Topic
(sensor_msg/Poi
ntCloud)

Name Input
parameters

Units/
comments

Output
parameters

Units/
comments

Kind

Pitch Angle: float Degrees Actual pitch
angle: float

 Action

Yaw

Angle: float Degrees Actual Yaw
angle: float

 Action

Thrust Speed: float Meters/sec Actual speed:
float

 Action

Forward Amount: float Meters -- Action

Heave Amount: float Meters -- Action

Sway Amount: float Meters -- Action

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 23

6 Parameters server (global system variables)

No global parameters have been defined yet.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 24

7 Other system’s elements

The watchdog, or Supervisor, is a SW module of the GNC component. Its purpose is to
monitor both hardware and software subsystems, in order to monitor their proper functioning
and take appropriate measures (e.g., restart software modules that has crashed, calibrate
control actions according to the available actuators and their performance, establish reckon
manoeuvres and even decide if/how to continue with the mission).

Wachdog

Low-level control
Sensor Fusion

<
<
P
u
b
lish

>
>

<
<

P
u
b

lis
h
>

>

<<Topic>>

Bat tery status <<Topic>>

Inst ruments status

<<Subscribes>>
<<Subscribes>>

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 25

8 Hardware

8.1 Computational Hardware

The following UML deployment diagram depicts the computation devices that will be adopted,
and specifies where the various software modules will be actually executed.

As shown in the diagram, the UX-1 is equipped with a CPU board that runs all the perception,
navigation and control software. The main CPU is connected via a CAN bus to the
microcontrollers that directly control the actuators of the robot.

More in details, the hardware is organized as shown in the following diagram.

Main CPU

Sensor Fusion
Motors microcontrollers

Low-level control

Guidance,

Navigat ion and

Control (GNC)

Localisat ion and

Mapping (SLAM)

<<CAN BUS>>

Main CPU

Motors microcontroller

<<CAN BUS>>

Motors microcontroller

<<CAN BUS>>

VESC VESC VESC VESC Ballast

VESC

<<CAN BUS>>

VESC VESC VESC VESC Pendulum

{Stepper

motor}

Calculations, power

distribution, VESC

commands assignment,

feedback calculations,

power monitoring

Power

dist ribut ion

Power

dist ribut ion

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 26

Two microcontrollers will be employed for the low level control system, which receives data
(e.g., a desired force vector) from the main CPU. Each microcontroller is responsible to
communicate with the speed controllers (VESC).

8.2 UX-1 Hardware Architecture

In order to support the software architecture that will detail in this report, the proposed UX-1
hardware and communications architecture is presented in the following diagram. Notice the
Master Clock used to sync the devices (red arrows).

Figure 9 - UX-1 Hardware Architecture

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 27

9 Reference system

The following image (from D1.3) depicts the thrusters numbering as well as the reference
frame of the robot.

Figure 10. Reference system and thrusters numbering

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 28

10 Software versions

We will use the following versions of software:

• Operating system: Linux UBUNTU distribution 16.04

• Middleware: ROS version Kinetic Kame

• Simulation environment: Gazebo version 7.0.0

• GITLab repository, version control and collaborative software
development (the GitLab is provided by INESC TEC in the following link address:
http://www.lsa.isep.ipp.pt:8000)

http://www.lsa.isep.ipp.pt:8000/

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 29

11 References

[1] wiki.ROS.org

[2] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User
Guide (2nd Edition), Addison Wesley, 2005.

[3] http://www.digilife.be/quickreferences/qrc/uml%20quick%20reference%20card.pdf

[4] https://www.holub.com/goodies/uml/

http://www.digilife.be/quickreferences/qrc/uml%20quick%20reference%20card.pdf
https://www.holub.com/goodies/uml/

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 30

12 APPENDIX: UML quick reference

In the following, we briefly describe the elements used and their main features. Quick UML
reference and cheat sheets can be found, e.g. in [3][4]. The UML “classical” –and
recommended-- reference book is [2].

Here, we we are mainly concerned with SW architecture, so will mainly use 3 kinds of UML
structural diagrams:

• Class diagrams

• Components diagrams

• Deployment diagrams

For the description of the behaviour of the system (its dynamic aspect, i.e., its evolution in
time) UML provides:

• Sequence/communication diagrams

• Use cases,

• State Machine diagrams

These will be used in a latter stage of the development.

12.1 Class diagrams

Class diagrams are used to model the static (or structural) part of the system. A class is an
element used model any kind of entities of the problem/solution. We will use classes to model
Nodes, Topics and other elements. A class is specified by its name, a set of attributes
(internal variables and parameters) and a set of methods (functions that the class can
perform). In particular, active classes are used to model “flows of control, i.e. processes
and threads. These will be used for the ROS nodes.

Classes have relationships with each other. These can be generalization, association,

dependency, realization and aggregation.

Symbol Relationship Use

Aggregation/Specialization

Models a “KIND OF” relationship. Used
to define new classes starting from
existing ones by means of adding
specific details. For instance, a LASER
is a kind of SENSOR.

Association

Associated classes communicate to each
other. Typically, associations are used to
send messages/invoke methods.

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 31

 Aggregation
Models a “PART OF” relationship. For
instance, the PLANNER is a part of the
NAVIGATION class.

Realization
Specifies that an element realizes
(implements) a certain function.

Dependency

Expresses a functional dependency (e.g.
use).

Note that classes are abstract structural elements. Their concrete implementation, or
instances, are named objects. Objects are used to specify the dynamics of the system and of
its components (see sequence diagrams below).

Finally, classes are also used to model physical element of a system, like electronic components
(except for computational resource, which are modelled as “nodes, see below).

12.2 Components diagrams

Simplifying, a component is a part of a system that groups a set of functionalities, and are
used for modularity. We will use components to group software modules in terms of the high-
level function they perform (see, e.g., Figure 3) and/or the partner responsible for them. An
example is shown below.

Components are characterised by the functionalities they provide, which are described in
terms of interfaces.

An interface is a collection of of operations that are used to specify a service implemented by
(an element of) a component. Interfaces define the separation between system’s modules, and
provide a clear separation between the component’s inside (how the service is implemented)
and outside (what the service does) [2].

Symbol Meaning Use

 Name

Output interface (compact version)

 Name

Input interface (compact version)

Guidance,

Navigat ion and

Control (GNC)

Guidance,

Navigat ion and

Control (GNC)

Localisation and

Mapping (SLAM)

SLAM

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 32

Interface (extended version) as stereotyped
class. Specifies the functions provided. Note
the dependency relationship of GNC
from the interface, and the realization
relationship between the SLAM module
and the interface.

12.3 Deployment diagrams and nodes

Deployment diagrams specify where the software modules are executed. Such diagrams
contains nodes (not to be confused with ROS nodes) and their relationships. A UML node is
physical element that represents a computational resource (e.g. a computer, a CPU, a
microcontroller). Communication between nodes is represented as an association relationship.
The communication protocol or other features can be expressed with a stereotyped association
(e.g.: <<Ethernet>>).

Symbol Meaning Use

Node

A computational
resource

12.4 Modelling system’s behaviour

• Sequence Sequence/communication diagrams

Sequence diagrams are one of the diagrams that are used to model the dynamic
behaviour of the system. They consist of a class of objects (class instances, i.e.
concrete system elements) and specify, in a time-ordered way, the messages these
exchanges.

• Use cases

Use cases specifies a high-level functionality of the system (or sub-system). It
involves an interaction with an “actor“, the user of the functionality, either a
human or another (sub-) system.

• State diagrams

State charts are one of the diagrams that are used to model the dynamic
behaviour of a component or subsystem. They are used mainly to model an
element’s life.

<<Interface>>

SLAM

Octree_map():Octree
Pose(): float[6]
…

Guidance,

Navigat ion and

Control (GNC)

Localisation and

Mapping (SLAM)

UNEXMIN – Deliverable 3.1 UX-1 Robot Software Architecture Report

UNEXMIN - May 2017 Page: 33

12.5 Common mechanisms

Additional semantic can be added/specified for the elements od a diagram using
stereotypes, properties and notes.

• <<Stereoptype>> A stereotype is a label that is added to UML elements to create new,
system-specific elements whose semantic is “similar” to the original element. We will
use stereotypes to create the Topic class (expanded mode) and to specify Topics and
services of the Nodes.

• {Properties}. A property is a free-text label that specify some property of the element it is
associated with.

• Finally, a Note is a visual element that contains any comment and remark that one may
need to do on a specific element, group or diagram.

Symbol Example Use

<<Stereotype>>

Creates a new element
extending an existing
one’s semantic

{Property}

Specifies some
characteristic of the
element

Comments, remarks,
clarifications, …

UNEXMIN SW architecture

version 0.1

16/03/2017

Author: C. Rossi, UPM

(c) UNEXMIN consortium

