

UNEXMIN DELIVERABLE D6.1

DATABASE SPECIFICATIONS MANUAL

Summary:

This document serves the purpose of providing a general presentation of the

UNEXMIN Website, describing all its content, elements, design and

functionalities. The final Project Website has detailed information about

project’s objectives, concept and approach, partners, work packages,

dissemination material and all other important project related content.

Authors:

RCI - Resources Computing International Ltd

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 690008.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN December 2016 Page: 2

Approval status

Function Name Date Signature

Deliverable

responsible

Stephen Henley 22.12.2016

WP leader Stephen Henley 22.12.2016

Reviewer 1 Csaba Vörös 20.12.2016

Reviewer 2 Viktor Füvesi 19.12.2016

Project

leader

Norbert Zajzon 22.12.2016

Lead beneficiary: Resources Computing International Ltd (RCI)

Other beneficiaries:

Due date: M11

Nature: Report

Diffusion Public

Revision

history

Author Delivery date Summary of changes

Version 1.0 Stephen Henley 18.12.2016

Version 2.0

Version 3.0

Version 4.0

Version 4.1

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN December 2016 Page: 3

Disclaimer: This report reflects only the author’s view. The European Commission is not
responsible for any use that may be made of the information it contains.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 4

Table of Contents

1 EXECUTIVE SUMMARY..5

2 INTRODUCTION...6

3 NOTATION...7

4 PRE-PROCESSING AND STORAGE..8

4.1 DATA STORAGE, BACKUP PROCEDURES..8

4.2 CONVERSION AND VALIDATION..8

5 METADATA..10

5.1 MISSION METADATA..10

5.2 SENSOR METADATA ...10

5.3 CAMERA METADATA ..10

6 DATA..11

6.1 DATA TYPES..11

6.2 DATA FILE STRUCTURES...11

6.3 NAVIGATION AND ATTITUDE DATA..11

6.4 SENSORS AND CAMERAS ...13

6.5 UX SYSTEM DATA ..18

7 FILE FORMATS AND NAMES..19

7.1 FILE AND TABLE NAMING CONVENTIONS ...19

7.2 FILE FORMATS...19

8 DATABASE MANAGEMENT...21

8.1 CHOICE OF DATA MANAGEMENT STRATEGY..21

8.2 DATABASE MANAGEMENT SYSTEM..25

8.3 TABLE STRUCTURE ...26

8.4 CODD FLAGS ...26

8.5 TIMESTAMP INTERPOLATION ...27

8.6 TABLE LINKAGE..28

8.7 SEARCH, SELECTION AND RETRIEVAL OF DATA ...28

9 REFERENCES ..30

10 ANNEX A: SUMMARY OF DATA TABLES ...31

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 5

1 Executive Summary

This document identifies the steps required to transfer data and metadata gathered in
missions of submersible UX-1 to a database where it is available for use in post-
processing applications. All data will be stored: navigation-related, data from sensors
and cameras, and submersible status and mission control/response data. The wide
range of different items of recording equipment will store data on-board the
submersible in different formats and widely differing volumes.

On completion of a mission, these data and metadata will all be transferred to a
backup storage medium, but cannot easily be used in the recorded formats. They
require pre-processing and conversion to a common standard file structure and
format which can be held in a standard database management system. The details of
the conversion software required will necessarily be defined separately for each data
set. However, the destination file structure can be specified, and will be a relational
database table. This document defines the structures of proposed database tables for
all data types.

There are a large number of database management systems from which to choose as
hosts for the database. A short list of candidate systems has been prepared, and one
system PostgreSQL has been identified as a potential system to be used. This is an
open-source software system, and also has an add-on product (also open-source)
PostGIS, for spatial data handling. These are currently under evaluation.

Other questions, independent of the software platform to be used, are also addressed.
These include the naming conventions for files and tables, the processing which will
be required to generate consistent sets of records from raw data in which timestamps
do not necessarily match, and a proposed method of handling missing data values.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 6

2 Introduction

UX-1 will operate autonomously, collecting data of a variety of different kinds during
submerged missions from a few minutes to several hours in length. Within each
mission, sensors, light sources, and cameras will be switched on and off at different
times under control of a set of mission commands. The timing for all switching will be
set according to a central system clock, and data from the sensors and cameras can be
linked through time stamps recorded with their data.

Together with the recorded data, there will also necessarily be metadata which records
relative locations of sensors, angles of view of cameras, and operating parameters.
Information linking metadata to the data sets for each sensor or camera will be
encoded in standardised file names.

On completion of each mission, a full backup copy of the recorded data will be made.
The metadata and data (recorded within ROS or Linux operating systems) will then be
converted as necessary into files which can be read by software running on the
Microsoft Windows platform.

First pass validation which will exclude or correct rogue data items should be carried
out during the conversion process.

Because timestamps on data from different sensors and cameras will not necessarily
coincide, it will in general be necessary to expand the data tables to provide
interpolated estimates for all timestamps. This interpolation process may be carried
out most conveniently by a separate program before import into a database
management system.

After import into the database management system, second-pass validation will be
carried out to check the consistency of the data.

The database management system to be used will be selected based on its capabilities
to handle very large data tables efficiently, to allow the use of flags or markers to
distinguish between real data elements and computed (interpolated) estimates, and to
deal with image and video data in additional to the simpler univariate or multivariate
data sets from sensors.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 7

3 Notation

This section defines the notation that will be used not only in this document but in the
design and development of the post-processing software for the UNEXMIN project.

Lower case letters in normal type denote scalar numeric data items
which may be of either 'integer' or 'double' (64-bit double-precision
floating-point) type

x

Timestamp values are represented by the lower case letter t with a subscript
indicating the sequential clock tick

ti

Lower case letters in bold type denote vectors of numeric items
x = (x1,x2,....,xn)

x

Upper case letters in normal type denote character data items A
Values in curly brackets denote mission and sensor identifiers {M}
Values in square brackets after a data item represent "Codd flags" which
are markers to indicate presence/absence/significance of the
data item they are attached to.

[c]

Data from each sensor typically would be represented for the j'th
timestamp by tj xj
In other words, simply the timestamp and a data vector for each time j

Location and attitude data are recorded in the same way, and linked to each
observation from each sensor through the timestamp values.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 8

4 Pre-processing and storage

4.1 Data storage, backup procedures

Data from UX-1 will be of three main kinds:

• navigation-related,

• sensor and camera data, and

• UX-1 status.
A standard procedure that should be adopted to minimise risk of data loss is that at
the end of a mission ALL data must be stored in its raw form (ROS/Linux file system)
on a backup hard drive which is kept in a secure environment. As soon as practicable,
a further backup of all data from this drive will also be taken and maintained in an
independent off-site location.

Data will then be processed as described in this document, and a full backup copy of
the processed data (Windows file system) will also be transferred on a backup hard
drive to a secure off-site location.

At each step in the computational process, backup copies need to be made, and
retained in safe locations. We would not advise "cloud" storage because of the time
taken to upload and download the very large volumes of data. It is better to have
separate external hard disk drives which can physically be stored in different locations.

4.2 Conversion and validation

Figure 4.2.1 shows the anticipated requirements for data conversion. Details of file
structures to be exported by the various conversion programs are given in section 5
below.

Figure 4.2.1: UX-1 data conversion tasks from UX-1 robot to DBMS (database
management system)

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 9

First-stage validation will be carried out during the conversion process, to ensure that
gross corruption is detected and offending data are excluded or corrected as
appropriate.

This will include plausibility range checks on each data item, and sequence checks on
time stamps. Suggested responsibilities for development of conversion software are
indicated in Figure 4.2.1, but detailed allocation of tasks is yet to be agreed.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 10

5 Metadata

All data held in the database will have associated metadata to provide the context: a
mission identifier, mission location, date, and more detailed information as may be
relevant to the instrument including reference to any initialisations or calibration
checks carried out.

5.1 Mission metadata

For each mission, a general mission metadata record will be created. This will include
a location code, robot identification, date of mission, and other information, including
a free text summary of the mission purpose. This record, after conversion, will be
appended to a mission metadata file in the database.

There is also a need for more descriptive information which should be both generated
by, and available to, the team operating the robot. This would include a record of
events, problems encountered, weather conditions which might be relevant (such as
excessive rainfall that would affect water chemistry or flow rates), names of visitors
and observers, etc. This could be held within the database and/or recorded on paper,
such as an engineer's logbook.

5.2 Sensor metadata

For each sensor, one or more metadata records will be generated, to record such
information as the mission identifier, the sensor identifier, start and stop timestamps
(there could be several of these within any one mission), recording interval expressed
in UX-1 system clock ticks, and other data which may be required such as sensor self-
test data or its 3D offset position relative to the UX-1 centre point.

5.3 Camera metadata

Cameras will require all of the same metadata as scalar sensors, plus also direction of
view (relative to the UX-1 reference frame), field of view, horizontal and vertical
resolution in pixels, start and end UX-1 system clock ticks, and any relevant addition
information such as light source unit(s) used, and recording format (RAW, TIF, PNG,
JPG, etc). As with sensor metadata there could be one or more metadata records for
each camera within any mission, with one record for each recording interval. Cameras
may have their own internal clocks, but the start/end system clock ticks recorded in
the metadata may be used to convert recorded camera time to UX-1 system time.

Before every mission a calibration process of the cameras is necessary. The distortion
of lens and dome have to be calculated for use during the post-processing calculations.
This information must also be included in the camera metadata. The distortion
transformation is a function of lens, positioning of the sensor in the housing,
irregularity of material of the glass dome, etc.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 11

6 Data

6.1 Data types

Most data will be numeric.

The primary key will generally be the timestamp, which must be recorded as an
integer value (notional clock ticks as recorded by the UX-1 central system clock -
possibly milliseconds) as an offset from start of mission. If held as a 32-bit integer
variable, the range of integers which can be stored is from -2147483647 to
+2147483647 which will be more than adequate for any realistic mission length.

A data set for which the timestamp is NOT the primary key will be the point cloud
resulting from the laser-stripe camera system, which records the walls, roof, and floor
of the flooded mine. This will have a composite primary key: the X,Y,Z point location,
probably encoded in an octree index.

Most recorded values will themselves be either integer or floating point numbers. A
standard 32-bit floating point value (single precision) provides only 6 digits precision,
which may be insufficient for some data. A decision on whether to use 32-bit or 64-bit
floating point values will be dependent upon the precision provided by the
instruments themselves. Current information suggests that 32-bit precision may be
sufficient.

The sensors and navigation units will not generate character data. Characters will in
general be needed only for construction of file names and for codes and descriptive
text in metadata. 8-bit characters using the standard ASCII set should be sufficient,
though additional flexibility could be obtained if required by using 16-bit Unicode
characters.

6.2 Data file structures

All data will be held in flat tables in which all rows carry the same types of data in the
same set of fields. This follows the relational model. For pure relational databases, the
order of rows is immaterial. In UNEXMIN, the order of data from sensors and other
data recording units on UX-1 will be fixed (ascending timestamp values). For derived
or computed data, the order may differ from this: for example, point cloud data may
be sorted by spatial coordinate values or octree index values1.

6.3 Navigation and attitude data

6.3.1 Data to be generated

The navigation and attitude system on UX-1 generates different types of data:

1 Octree encoding description: https://en.wikipedia.org/wiki/Octree

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 12

a) UX-1 location (x,y,z coordinates)
b) UX-1 attitude (pitch, yaw, and roll angles)
c) Camera images from LED illumination
d) Camera images from laser stripe illumination
e) Point cloud extracted from laser stripe, computed on-board with absolute

 x,y,z coordinates (and other data - intensity and colour?)
f) Acoustic data (sonar) images

These different data sets need to be held in separate files. The camera images (c and d)
may be held either as separate uncompressed data files or collectively in a non-lossy
video file format.

6.3.2 Survey coordinate system

All data will be converted, before admission to the database, to the global coordinate
system defined for the location (the mine where the current set of missions is carried
out). This may be a locally defined mine grid, or a national grid, or UTM coordinates.
Whichever grid system is used, the launch location must be accurately keyed to the
grid using existing or new survey stations, and the location and orientation of UX-1
must be initialised accurately to this grid at the start of each mission. This is a crucial
requirement, as data collected on successive missions (including new point clouds)
must be registered accurately to the same point cloud for the mine walls, roof, and
floor.

6.3.3 UX-1 location

The navigation subsystem will use the mission initialisation data (starting coordinates
and UX-1 orientation) to record absolute locations in three dimensions at a set of
regular time intervals, and will produce a table of data in which each row consists of
timestamp, X, Y, Z. The time intervals must be sufficiently short that any linear
interpolation of locations will yield estimated locations at an acceptable level of
accuracy (+/- 1 mm). The laser stripe system should produce stripes at not greater
than 25mm spacing.

6.3.4 UX-1 attitude: pitch, yaw and roll

The pitch, yaw, and roll data obtained from the pendulum and spinning disk
subsystems will be recorded on the same regular time intervals as the locations,
yielding a table with each row containing timestamp, pitch angle, yaw angle, roll angle.

From the combination of location and attitude data it will be possible to determine the
absolute location (and direction of view for cameras) of every data recording device on
UX-1. Interpolation of location and attitude data may be required if time stamps on
the recording devices (sensors) do not match those of the navigation and attitude
systems.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 13

6.3.5 Camera LED images

The laser stripe units will each include a colour camera which will record a full colour
high-resolution image (with white-light LED illumination) in between a sequence of
laser stripe images. This image may be stored either as a frame within a (non-
compressed) video format file, or as a separate still image file. These images will most
likely either be stored initially in uncompressed RAW or JPG format, or will be
extracted automatically (such as every n'th image from a video) into a series of
uncompressed RAW or JPG files. It is possible that other formats may be used
instead: the only restrictions from the point iof view of post-processing is that images
must be stored using well-defined industry standard formats; if compressed must use
a non-loss data compressi0n method.

6.3.6 Camera laser stripe images

The laser stripes will be processed on-board the robot. These must in general be
considered as 'noisy' data, as the stripes can be disturbed by suspended particles in the
water and other problems. There will be some on-board automatic cleaning of the data
to generate the point cloud. It is not intended that the raw images will be retained.

6.3.7 Point cloud from laser stripes

On-board processing will sample the laser stripes at regular intervals to generate a set
of points along each stripe. These points must be recorded together with associated
information: timestamp, stripe packet no. (the image no.), stripe no. within packet,
X,Y,Z absolute location or location relative to UX-1 (which can be converted
subsequently to absolute coordinates). Also to be recorded for each point, whether or
not the X,Y,Z are absolute locations, should be the UX-1 location (reference point,
whether the centre or other defined reference point for within-robot relative
coordinates), attitude angles, and traversed distance within mission. For each laser
stripe the scanning angle (as the laser nods up and down) should also be recorded.
Stripe packets are the set of one or more stripes between LED images. Stripe numbers
are the sequential numbers of stripes within a packet. These numbers are important
because they will allow more efficient post-processing such as triangulation of the
point cloud.

6.3.8 Acoustic images

Data from the forward-looking acoustic camera will be recorded as virtual images,
with format to be identified, dependent on selection of the sensor device to be used.

6.4 Sensors and cameras

The exact combination of sensors to be installed is not finally decided and in any case
can change from one mission to another. The sets of data below are therefore not the
only data which may be available, as additional sensors may also be included at a later
date. For this reason also, precise formats are not defined: the CSV format allows
sufficient freedom to encode any necessary data. Annex A includes as full a list as it is

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 14

possible to construct at the present stage, but may need to be updated from time to
time as the list of sensors changes.

6.4.1 Temperature

Temperature will be measured by various sensors on UX-1 but during conversion of
data from instruments should be extracted to a separate database file as it may be
required for various different purposes. This file will contain just two columns:
timestamp and temperature.

6.4.2 Pressure

As with temperature, water pressure will be measured by various sensors on UX-1 but
during conversion of data from instruments should be extracted to a separate
database file as it may be required for various different purposes. This file will contain
just two columns: timestamp and water pressure.

6.4.3 Electrical conductivity

Figure 6.4.3.1 Measurement of electrical conductivity

This file will contain just two columns: timestamp and conductivity.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 15

6.4.4 pH (acidity/alkalinity) values

Figure 6.4.4.1 Measurement of pH

The pH value is sensitive to pressure, and more strongly to temperature, so it will be
necessary to pre-process the data before admitting it to the database, using data from
the reference electrode. pH values in the range of 0 to 14 will be stored, together with
the timestamp.

6.4.5 Magnetic field

Figure 6.4.5.1 measurement of magnetic field

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 16

Magnetic field data are directional. The sensors will record total field strength and
field orientation, which must be converted to the global coordinate system before
admission to the database. The sensors will also give six temperature readings which
can be averaged to give an output temperature value, and are also used for UX-1 self-
test diagnostic purposes.

After conversion, the data to be returned will include the timestamp, field strength,
and direction cosines for field direction, as well as a temperature value to be stored in
a separate table.

6.4.6 Gamma Ray Count

Figure 6.4.6.1 Measurement of gamma ray flux

Gamma ray data will be recorded as a total count within a standard time interval. This
will be recorded with a single timestamp (which indicates the start of this interval).
The gamma ray count is significantly attenuated by water, so it will be necessary to
post-process the data by adjusting the recorded counts for the distance of the sensor
from the rock wall, using appropriate calibration curves. The attenuation curves for
uranium and thorium are different, so it will be necessary in any mission to decide
which element (or a mixture) should be the most suitable.

After conversion, the data file will consist of a table containing timestamp and the raw
and adjusted gamma counts.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 17

6.4.7 Multispectral camera data

Figure 6.4.7.1 Multi-spectral camera setup

This camera will record data in greyscale, using a set of 12-14 monochromatic LEDs
used sequentially with fixed (probably 50millisecond) exposures. The metadata for
this camera must record its position on UX-1, calibration and distortion data, the set
of wavelengths used, the direction of view, and the angle of view, so that ray tracing
may be used to map each pixel to the wall point cloud obtained from the navigation
laser stripes. For each recording session (of which there may be several within each
mission) the main UX-1 clock will be used, to put the start and stop times into the
metadata file.

Data will be recorded on the camera either as a series of still images in separate files,
or as a virtual video file from which the still images can be extracted during the
conversion process. Timestamps within any recording session may be generated
automatically by interpolation from the start and stop times recorded in the metadata.

6.4.8 Fluorescence images

An ultraviolet light source will be used to allow fluorescent images to be obtained,
using the colour recording navigation camera. The exposure times for this will be
recorded from the main UX-1 clock. These images will be recorded within the cycle of
multi-spectral images, but by a colour camera rather than the monochrome camera
used for the multi-spectral data.

6.4.9 Sub-bottom sonar

Data from a sub-bottom sonar profiling unit, if fitted, will allow a continuous profile of
the floor along horizontal tunnels, to give information on the floor properties -
indicating whether it is solid rock or includes some depth of mud, for example. It is
likely that timestamps will not be recorded within a profiling sequence, but will need
to be computed from a metadata recorded giving profiler start and stop times.
Location and direction of view will be recorded. Data will be recorded in, or converted
to, the standard SEG-Y format as used for seismic data.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 18

6.4.10 Summary of Data Formats

The formats for data from all instruments, for import into the database, are
summarised in Annex A.

6.5 UX system data

6.5.1 Battery status file

This file records the battery status (for each system battery, if this is possible) at
regular time intervals: charge level and any warnings (such as high discharge rate
which might indicate a short-circuit, or fuse burnouts).

6.5.2 Mission command file

The mission setup file is the set of commands supplied to the UX-1 central processor
for each mission. This file includes absolute instructions (to be executed
unconditionally) as well as instructions to make decisions dependent upon data
obtained during the mission.

6.5.3 Mission actions file

This file, which may also be called a "mission log", records the actions that are
actually taken by UX-1 during a mission, including the decisions taken, and the
starting and stopping of data recording on each sensor, and of thrusters, pendulum,
buoyancy unit, and other navigation controls. There will be at least one mission log,
and potentially multiple mission logs for actions by different subsystems of UX-1.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 19

7 File Formats and Names

7.1 File and Table naming conventions

There will be a very large number of separate data and metadata files generated by
UNEXMIN missions. A file naming convention is therefore absolutely essential, in
order to assist organisation and retrieval of data. The following standard naming
convention is proposed for use both as file names and in naming relational database
tables (see notation conventions in section 3 above):

{M}rrrr.UXM for metadata
{M}rrrr.UXD for scalar data
{M}rrrr.VVV for video data, where VVV is the standard extension for the video format
used
{M}rrrr-ffffff.PPP for image data, where PPP is the standard extension for the image
format used

{M} mission/sensor identifier in the form XXXyyyymmddnnSSS
XXX three-character location code (such as IDR = Idrija),
yyyymmdd the date (e.g.20160801 for 1st August 2016)
nn sequential number of the mission on that date (in range 01 to 99)
SSS a code identifying the sensor unit data stream
rrrr sequential number of the recording session within the mission (in

range 0001-9999). A recording session is the interval between turning
a sensor on and turning it off again

ffffff a six-digit sequential identifier (in the range 000001-999999) of the
frame or image within a recording interval

Industry standard video and image formats are allowed. It is preferred that
uncompressed data, or formats using lossless compression, be used, to avoid any loss
of data collected by the cameras. The preferred image format is uncompressed RAW,
though if necessary to save storage space, uncompressed JPG may be used. Each
image and each video sequence shall be held as a separate file.

7.2 File formats

The image and video formats may be selected from those identified above. Data from
other sensors, and metadata, should all be converted to a standard CSV format, using
semicolon or tab delimiters (rather than commas). The delimiter character used
should be excluded from the list of legal characters within data sets to avoid any
confusion. The semicolon might be preferable because it is printable, but care should
then be taken to exclude it from any free text fields within metadata.

In pre-processing any free text within metadata, the chosen delimiter character should
be replaced by spaces. In floating-point numbers, there must be no thousands
separator, but either dot or comma may be used for the decimal point character,
provided that usage is consistent within any file. For consistency the consortium

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 20

must adopt a single standard for this: it is proposed here that the decimal
point be represented by the dot character: "."

Where dates and times are used, a standard format should always be adopted: the
format proposed is:
 YYYY-MM-DD hh:mm:ss+HH (or -HH) offset to GMT
No special coding is needed for adjustment to daylight saving time.

The primary key for most files will be the timestamp, which must be recorded as an
integer value (notional clock ticks - possibly milliseconds) as an offset from start of
mission. If held as a 32-bit integer variable, the representable range is -2147483647 to
+2147483647 which will be more than adequate for any realistic tick length. In
practice, tick counts will start at zero. The negative part of the range will not be used.

CSV files should contain field names in the top line, and data values in all succeeding
lines.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 21

8 Database Management

8.1 Choice of Data Management Strategy

There are 3 principal options:-
(1)simple text-format files (such as CSV) for everything

(2)a database management system such as PostgreSQL for data storage / sharing

(3)a standard data interchange format such as NetCDF or HDF5 for data storage /

sharing

Each has advantages and disadvantages.

8.1.1 Text-format files

Either fixed-format or CSV files are a standard and well-tried medium for data
transfer and (less so) for data storage. They have the advantages of simplicity,
legibility, and portability across different computer architectures, operating systems,
and languages. There are three significant disadvantages: storage space requirements
(unless zip or some other compression algorithm is used), processing time (conversion
to and from the text format), and inflexibility: lack of any functionality for selective
retrieval or for multi-file operations such as merging two data sets, for which explicit
coding must be provided.

There are a few text-format database management systems which have been
developed. The purpose of these is to provide simple human-readable data tables
which can be processed in the same way as normal relational database management
systems. Although they would appear to offer the best of both worlds, they are
generally incomplete, and because of the need to convert numeric data to and from
text formats they are very slow for large volume data sets, and also potentially
compromise data integrity through rounding errors in the format conversion. These
systems are not widely used and are of questionable reliability.

8.1.2 Database management systems

A standard relational database system such as MS Access, Oracle, MySQL, or
PostgreSQL provides completely general and transparent functionality for data files
and collections of files with simple to highly complex interrelationships. The principal
disadvantages are concerned with speed of operation. However, this is outweighed by
the flexibility of data handling (file merging, selective retrieval, etc) using SQL. Most
DBMSs on Windows operating system can be accessed directly from applications
software through an ODBC (Open DataBase Connectivity) library. Where this may be
unavailable, it is always possible to export data into CSV or other text format files for
import to applications programs.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 22

8.1.3 Data interchange formats

The two most widely used interchange formats are NetCDF2 and HDF53, with the
intended purpose of fast and storage-efficient handling of simple or complex data
structures. The definitions of the two are fairly similar. Both are supported by open-
source libraries written in C, with bindings for several other languages. Both are
claimed to give substantial speed advantages over DBMS systems, and even provide
some SQL-like functionality for selective retrieval of required subsets of data.
However, the definitions for both formats are long and complex, and users are
discouraged from using these directly. Instead, the use of 'standard' libraries is
promoted. However, this leads to a number of problems4. NetCDF shares most of the
same issues. The following sections are abbreviated quotations from this blog:

8.1.3.1 Single implementation

The HDF5 specification is very complex and low level. It spans
about 150 pages. In theory, since the specification is open, anyone can
write their own implementation. In practice, this is so complex that there
is a single implementation, spanning over 300,000 lines of C
code. The library may be hard to compile on some systems. There are
wrappers in many languages, including Python. They all rely on the
same C library, so they all share the bugs and performance issues of this
implementation. Of course, the wrappers can add their own bugs and
issues.
The code repository of the reference implementation is hard to find. It
looks like there is an unofficial GitHub clone of an SVN repository. There
are no issues, pull requests, little documentation, etc. just a bunch of
commits. To understand the code properly, you have to become very
familiar with the 150 pages of specification.
Overall, using HDF5 means that, to access your data, you're
going to depend on a very complex specification and library,
slowly developed over almost 20 years by a handful of
persons, and which are probably understood by just a few
people in the world. This is a bit scary.

8.1.3.2 Corruption risks

Corruption may happen if your software crashes while it's accessing an
HDF5 file. Once a file is corrupted, all of your data is basically lost
forever. This is a major drawback of storing a lot of data in a
single file, which is what HDF5 is designed for. Users of our
software have lost many hours of work because of this. Of course, you
need to write your software properly to minimize the risk of crashes, but
it is hard to avoid them completely. Some crashes are due to the HDF5
library itself.

2 NetCDF format specification: http://www.unidata.ucar.edu/software/netcdf/netcdf/File-Format-Specification.html
3 HDF5 format specification: https://support.hdfgroup.org/HDF5/doc/H5.format.html
4 Problems with HDF5 are discussed here: http://cyrille.rossant.net/moving-away-hdf5/

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 23

8.1.3.3 Various limitations and bugs

Once, we had to tell our Windows Python language users to downgrade
their version of h5py because a segmentation fault occurred with
variable-length strings in the latest version. This is one of the
disadvantages of using a compiled library instead of a pure Python
library. There is no other choice since the only known implementation of
HDF5 is written in C.
UTF-8 support in HDF5 seems limited, so in practice you need to rely on
ASCII to avoid any potential problems.

There are few supported data types for metadata attributes. In Python, if
your attributes are in an unsupported type (for example, tuples), they
might be silently serialized via pickle to an opaque binary blog, making
them unreadable in another language like MATLAB.

A surprising limitation: as of today, you still can't delete an array
in an HDF5 file. More precisely, you can delete the link, but the data
remains in the file so that the file size isn't reduced. The only way around
this is to make a copy of the file without the deleted array (for example
with the h5repack tool). This is problematic when you have 1TB+ files.
The upcoming HDF5 1.10 promises to fix this partially, but it is still in
alpha stage at the time of this writing.

8.1.3.4 Performance issues

Since HDF5 is a sort of file system within a file, it cannot benefit from the
smart caching/predictive strategies provided by modern operating
systems. This can lead to poor performance.

If you use chunking, you need to be very careful with the chunk size and
your CPU cache size, otherwise you might end up with terrible
performance. Optimizing performance with HDF5 is a rather
complicated topic.

In conclusion, we found out the hard way that HDF5 may be quite
slower than simpler container formats, and as such, it is not
always a good choice in performance-critical applications. This
was quite surprising as we (wrongly) expected HDF5 to be particularly
fast in most situations. Note that performance might be good enough in
other use-cases. If you consider using HDF5 or another format, be sure to
run detailed benchmarks in challenging situations before you commit to
it.

8.1.3.5 Poor support on distributed architectures

Parallel access in HDF5 exists but it is a bit limited and not easy to use.
MPI is required for multiprocessing.

HDF5 was designed at a time where MPI was the state-of-the-art for high
performance computing. Now, we have large-scale distributed
architectures like Hadoop, Spark, etc. HDF5 isn't well supported on these

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 24

systems. For example, on Spark, you have to split your data into multiple
HDF5 files, which is precisely the opposite of what HDF5 encourages you
to do [see also this document by the HDF Group].

By contrast, flat binary files are natively supported on Spark.

8.1.3.6 Opacity

You depend on the HDF5 library to do anything with an HDF5
file. What is in a file? How many arrays there are? What are their paths,
shapes, data types? What is the metadata? Without the HDF5 library,
you can't answer any of these questions. Even when HDF5 is installed,
you need dedicated tools or, worse, you need to write your own script.
This adds considerable cognitive overhead when working with scientific
data in HDF5.

You can't use standard Unix/Windows tools like awk, wc, grep, Windows
Explorer, text editors, and so on, because the structure of HDF5 files is
hidden in a binary blob that only the standard libhdf5 understands. There
is a Windows-Explorer-like HDFView tool written in Java that allows
you to look inside HDF5 files, but it is very limited compared to the tools
you find in modern operating systems.

8.1.3.7 Philosophy

HDF5 encourages you to put within a single file many data
arrays corresponding to a given experiment or trial. These
arrays are organized in a POSIX-like structure.

One can wonder why not just use a hierarchy of files within a directory.
Modern file systems are particularly complex. They have been designed,
refined, battle-tested, and optimized over decades. As such, despite their
complexity, they're now very robust. They're also highly efficient, and
they implement advanced caching strategies. HDF5 is just more limited
and slower. Perhaps things were different when HDF5 was originally
developed.

If you replace your HDF5 file by a hierarchy of flat binary files and text
files, as described in the previous section, you obtain a file format that is
more robust, more powerful, more efficient, more maintainable, more
transparent, and more amenable to distributed systems than HDF5.

The only disadvantage of this more rudimentary container format I can
think of is portability. You can always zip up the archive, but this is
generally slow, especially with huge datasets. That being said, today's
datasets are so big that they don't tend to move a lot.

When datasets are really too big to fit on a single computer, distributed
architectures like Spark are preferred, and we saw that these
architectures don't support HDF5 well.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 25

8.1.4 Conclusions

The promise of standard data interchange formats like NetCDF and HDF5, of speed
advantages when processing very large data sets, appears to be greatly outweighed by
the problems identified above. These formats have been used effectively, but the
underlying software libraries are opaque, and the user base is much smaller than for
commonly used database management systems, so there is a smaller pool of expertise
available to assist when problems arise.

Even though the data structures needed for UNEXMIN are not excessively complex,
there are requirements for both merging and selective retrieval of data sets, which can
be coded very easily using SQL. Standard RDBMSs are now used extensively and have
been optimised for efficiency in processing either small or very large databases.

The recommendation therefore is that a text-based interchange format (like CSV) be
used where necessary, such as in conversion from sensor data to a common form, or in
export of data from databases for processing by applications software where an ODBC
library is not available, and that a standard relational DBMS should be used for long-
term storage and management of UNEXMIN data.

8.2 Database Management System

There is a wide choice of database management systems available, at varying prices
(ranging from free, open-source, upwards) and with varying capabilities. The majority
are developed for a commercial market, and have limited numerical processing
capabilities. Currently there are three main types of DBMS: relational5, object-
oriented6, and network or tree-structured ("CODASYL"7).

• Relational DBMSs are based on concepts originally developed by E.F.Codd in
the 1970s, and use flat tables consisting of rows (tuples) and fields
(attributes), linked through special attributes identified as key fields.

• Object oriented DBMSs are based on the concept of an 'object' and are
intimately linked to object-oriented programming languages.

• CODASYL DBMSs are almost invariably used for commercial applications with
queries programmed in the COBOL language

Of the three types of system, by far the majority of scientific applications use relational
DBMSs. This is mainly because of their flexibility (it is not necessary, in general, to
define the full database schema in advance) and the ease of interfacing with a wide
range of data processing applications including numerical scientific programs.

There is a wide choice of these available8. The most accessible is Microsoft Access9,
which is a partial implementation of the relational model. Microsoft SQLServer10 and
the open source MySQL11 are probably the most widely used DBMSs on the Internet.

5 Description of the relational database concept: https://en.wikipedia.org/wiki/Relational_database_management_system
6 Description of the object-oriented database concept: https://en.wikipedia.org/wiki/Object_database
7 Description of the Codasyl database concept: https://en.wikipedia.org/wiki/CODASYL
8 https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 26

Two leading open-source DBMSs which should be considered are PostGreSQL12 and
Firebird13 (originally Borland Interbase). Of the many proprietary DBMSs to be
considered, probably the leading contender is Oracle14.

A preliminary comparison of these different systems suggests that PostGreSQL may
be the preferred option, but further investigation will be needed. PostGreSQL has an
extension "PostGIS15" for spatial data, and also a number of developers have added
point cloud processing capabilities16 17 18 19 20. The Firebird DBMS, although it has a
good reputation for robustness and speed, does not appear to have similar spatial data
handling capabilities.

8.3 Table structure

All data will be held in flat tables in which all rows carry the same types of data in the
same set of fields. This follows the relational model. For pure relational databases, the
order of rows is immaterial. In UNEXMIN, the order of data from sensors and other
data recording units on UX-1 will be fixed (ascending timestamp values) but to make
the order explicit, a record (row) number should also be added when the database
table is created, as an additional primary key field.

For point cloud data - in which points are not uniquely related to timestamps, a
unique key (point number) will be generated on construction of the database table.
For derived or computed data, the order may differ from this: for example, point cloud
data may be sorted by spatial coordinate values or octree index values.

8.4 Codd flags

In most commercial database management systems, missing data elements are
represented by a "NULL" code. However, there are many possible reasons for such
missing data. It may simply be an unknown value, or it may be an artifact of a
database process such as a table 'join' or 'union' procedure (Codd, 1). When data are
present, also, these may be real data items as supplied from an external source, or they
may be computed within the database.

Edgar Codd (1), the originator of the relational database model, proposed to use a
special flag to identify the reason for absence of a data item. Such a flag could also be
used to indicate relative reliability of a data value, or whether a data value is real or
computed. In the RCI VMINE system, and one or two commercial systems, there is

9 https://products.office.com/en-gb/access
10 https://www.microsoft.com/en-gb/cloud-platform/sql-server
11 https://www.mysql.com/
12 https://www.postgresql.org/
13 http://www.firebirdsql.org/
14 https://www.oracle.com/database/index.html
15 http://postgis.net/features/
16 https://github.com/pgpointcloud/pointcloud
17 http://www.oslandia.com/pages/postgis-pointcloud-en.html
18 http://gis.stackexchange.com/questions/57031/huge-point-cloud-laser-data-in-postgis-storing-and-processing-it
19 http://lanyrd.com/2013/foss4gna-2013/schqtd/
20 http://s3.cleverelephant.ca/foss4gna2013-pointcloud.pdf

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 27

provision for a Codd flag to be included automatically. In other systems, it is in general
possible to set up an additional field (where needed) for each data field, to hold the
Codd flag. In UNEXMIN, it is particularly important to identify whether a data item is
a real observation or is computed, for example by interpolation of data recorded at
different time intervals as explained in 8.5 below.

The standard flags defined by Codd are:
 "A" for missing but applicable (data value would be valid if supplied)
 "I" for missing and inapplicable (data value cannot exist: this is an artifact

of the database functionality)
In either of these cases, the content of the data value field itself should be ignored as it
is considered to be missing or 'null'.

It is proposed to add a new flag:
 "E" for an estimated or computed value, estimating the data value which

'should' be present
This will make it easy to distinguish between real recorded data and estimated values
generated purely for post-processing.

Table 8.4.1 Codd flags
Data element Codd flag Meaning
Actual value Value as recorded by instrument
"Null" A Absent: missing data element
"Null" I Inapplicable: an artifact of database processing
Estimated value E Computed estimate of value for this tuple

In any DBMS, the SQL queries can be framed in such a way as to test the Codd flag
before accessing the data value. A DBMS that contains Codd flags may be considered
as an "open-world" database management system in contrast with the normal "closed-
world" database management systems used in business applications (Henley, 3,4).

8.5 Timestamp interpolation

The navigation/attitude system and all sensors will take their timestamps from the
UX-1 central clock. For video recording, these timestamps will define recording start
and stop times, while a local clock within each camera will define the times for each
frame or image. In the conversion process, these local times will be translated to UX-1
central times using the start and stop timestamps.

In general, it cannot be assumed that all sensors will record data at exactly the same
clock ticks: there will be offsets as illustrated in Figure 8.5.1.

In order to link the multiple data streams, it is necessary to carry out a database union
of timestamps from all sensors. An outer join of the data tables will yield a table with
many 'missing data' holes (the left-hand table in Figure 8.5.1). These holes may be
filled with computed estimates as in the right-hand table. In order to distinguish these
estimates from original data, it is proposed to use a Codd mark 'E'. Computation of the
estimates should be by simple linear interpolation, thus:

 a(E)ti = at1 + (at2-at1) (ti-t1) / (t2-t1) (1)

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 28

where at2 and at1 are the sensor data values at time t2 and t1 respectively, and a(E)ti is
the estimated value at time ti where t2 > ti > t1

Figure 8.5.1. Illustration of mismatched recording times
DATA AS RECORDED DATA PLUS INTERPOLATED ESTIMATES

Time Navigation Sensor A Sensor B Time Navigation N-Codd Sensor A A-Codd Sensor B B-Codd

t1 XXX AAA t1 XXX AAA b E

t2 AAA BBB t2 x E AAA BBB

t3 XXX t3 XXX a E b E

t4 BBB t4 x E a E BBB

t5 XXX AAA t5 XXX AAA b E

t6 t6 x E a E b E

t7 XXX t7 XXX a E b E

t8 AAA BBB t8 x E AAA BBB

t9 XXX t9 XXX a E b E

t10 AAA t10 x E AAA b E

… … … … … … … … … … …

The 'XXX', 'AAA', and 'BBB' represent real recorded values, and would have blank
associated Codd flags.
The 'x', 'a', and 'b' represent the interpolated values and would have associated Codd
flags of 'E' (for 'estimated').

8.6 Table linkage

The principal method of linking data from different tables will be through a common
key field: in most cases this will be the time stamp. This linkage will use standard
database methods.

Where the timestamp is insufficient to provide unique linkages between data elements
- such as for pixels in different images created at the same time - it may be necessary
to use computational methods to combine data sets, for example by first calculating
the exact x,y,z location of each pixel in each image. These computational methods are
unlikely to be supplied as standard in any DBMS, and would need to be programmed
by UNEXMIN participants.

8.7 Search, Selection and Retrieval of Data

8.7.1 Search and selection methods

Usually, although the primary key will be the timestamp, this is not the field which will
be used for searching the database unless it is known where UX-1 was located at a
particular time. The most common search parameters will be locational.

Efficient location search in a 2 or 3 dimensional space is a well-known computational
problem. The least efficient solution is 'brute force' searching of every record of a table.
A number of more efficient methods have been developed. Of these, the most general

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 29

and probably the simplest to implement is octree indexing21. An octree index to a data
table is generated by identifying the cube in which each data point lies, within a
hierarchic set of cubes of progressively smaller dimensions (Figure 8.7.1)

Figure 8.7.1 Octree encoding

8.7.2 Data Retrieval

Data sets retrieved from one or more database tables are themselves held in tables.
Depending on the database implementation and user requirements, these may be
virtual tables that are created only in memory and lost when no longer required for
immediate processing tasks, or they may be permanent ('persistent') tables which can
be retained within the database or can be exported for processing by applications
software. Most DBMSs allow virtual tables to be saved as persistent tables for future
use.

21 Octree encoding method explained: https://en.wikipedia.org/wiki/Octree

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 30

9 References

(1) Codd, E.F., 1990. The Relational Model for Database Management,
Version 2. Addison-Wesley, Reading, Massachusetts, 538pp.

(2) Date, C.J., Hugh Darwen, and Nikos A. Lorentzos, 2003. Temporal Data
and the Relational Model. Morgan Kaufmann, Amsterdam, 422pp.

(3) Henley, S., 2005. The Man Who Wasn't There: the problem of partially
missing data: Computers & Geosciences v. 31, no.6, pp. 780-785

(4) Henley, S., 2006. The problem of missing data in geoscience databases:
Computers & Geosciences, v.32, no.9, pp1368-1377.

UNEXMIN – Task 6.1 – Database Specifications Manual

UNEXMIN - December 2016 Page 31

10 ANNEX A: Summary of Data Tables

Data type Primary key Other fields
UX-1 location Timestamp X,Y,Z
UX-1 attitude Timestamp Pitch_angle, Yaw_angle, Roll_angle
UX-1 speed, acceleration Timestamp dx,dy,dz speed in 3 directions

d2x,d2y,d2z, accelerations
Both can be estimated if necessary
from successive locations at different
timestamps

Camera images from LED Timestamp Camera ID, X,Y,Z, Image_filename
Colour Camera images Timestamp Camera ID, X,Y,Z, Image_filename
Point cloud extracted from
laser stripes

Timestamp X,Y,Z (,Intensity,R,G,B), Stripe_No,
Point_No, Mission_ID, UX-1
location x,y,z, UX-1 attitude angles,
laser stripe angles, cumulative
distance and time, additional fields
from multispectral and colour
cameras

Acoustic camera images Timestamp X,Y,Z, Image filename?
Thermometer Timestamp Temperature
Water Pressure Timestamp Water Pressure
Conductivity Timestamp Conductivity
pH Timestamp pH
Magnetic field Timestamp Field strength, Direction (dX,dY,dZ)
Gamma Ray Timestamp Count, Wall_Distance
Multispectral camera Timestamp Camera ID, LED_ID, Frame number
Colour camera
fluorescence images

Timestamp Camera ID, X,Y,Z, Image_filename

Sub-bottom sonar Timestamp Reflection-1,2,3,4... times using the
SEG-Y format

Battery status Misson_ID +
Timestamp

Charge level

Mission command file Misson_ID +
Timestamp

Command

Mission actions file (log) Misson_ID +
Timestamp

Action taken

Mission_Metadata Misson_ID Start_Time, End_Time, Description
Camera Metadata Mission_ID Camera properties including location

in UX-1, view direction relative to
UX-1 coordinate system, distortion
correction parameters.....

Sensor Metadata Mission_ID Sensor properties

